

Molecular imaging in Nuclear Medicine

Applications in Artificial Intelligence From Biomarkers to Theranostics

Prof. Eric Guedj *Biophysics & Nuclear Medicine Dpt. Marseille, France*

eric.guedj@ap-hm.fr

- Need of precise and early characterization to:
 - diagnose and guide treatment of diseases otherwise incurable at later stages
 - valuate efficiency of (expensive) therapeutics to not delay more effective treatment, and not cause unnecessary side effects

- Need of **precise** and **early** characterization to:
 - diagnose and guide treatment of diseases otherwise incurable at later stages
 - valuate efficiency of (expensive) therapeutics to not delay more effective treatment, and not cause unnecessary side effects
- Evolution towards personalized medicine

groups of patients \rightarrow the individual patient

- Need of **precise** and **early** characterization to:
 - diagnose and guide treatment of diseases otherwise incurable at later stages
 - valuate efficiency of (expensive) therapeutics to not delay more effective treatment, and not cause unnecessary side effects
- Evolution towards **personalized medicine** groups of patients \rightarrow the individual patient
- Diagnostic and therapeutic advances mainly driven by non-invasive bioimaging, particularly at individual level, for molecular signature

- Need of **precise** and **early** characterization to:
 - diagnose and guide treatment of diseases otherwise incurable at later stages
 - valuate efficiency of (expensive) therapeutics to not delay more effective treatment, and not cause unnecessary side effects
- Evolution towards **personalized medicine** groups of patients \rightarrow the individual patient
- Diagnostic and therapeutic advances mainly driven by non-invasive bioimaging, particularly at individual level, for molecular signature
 - molecular changes precede morphological ones (more sensitive for early diagnosis and evaluation)

PET Predicts Prognosis After 1 Cycle of Chemotherapy in Aggressive Lymphoma and Hodgkin's Disease

Lale Kostakoglu, MD¹; Morton Coleman, MD²; John P. Leonard, MD²; Ichiei Kuji, MD¹; Holly Zoe¹; and Stanley J. Goldsmith, MD¹

The Journal of Nuclear Medicine • Vol. 43 • No. 8 • August 2002

Brain hypoperfusion in patients with depression

Richieri et al., EJNMMI 2011

50% of brain dopaminergic loss before first symptoms of Parkinson

Healthy subject

Patient with Parkinson's disease

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

AUGUST 30, 2012

VOL. 367 NO. 9

Clinical and Biomarker Changes in Dominantly Inherited Alzheimer's Disease

 Randall J. Bateman, M.D., Chengjie Xiong, Ph.D., Tammie L.S. Benzinger, M.D., Ph.D., Anne M. Fagan, Ph.D., Alison Goate, Ph.D., Nick C. Fox, M.D., Daniel S. Marcus, Ph.D., Nigel J. Cairns, Ph.D., Xianyun Xie, M.S.,
 Tyler M. Blazey, B.S., David M. Holtzman, M.D., Anna Santacruz, B.S., Virginia Buckles, Ph.D., Angela Oliver, R.N.,
 Krista Moulder, Ph.D., Paul S. Aisen, M.D., Bernardino Ghetti, M.D., William E. Klunk, M.D., Eric McDade, M.D.,
 Ralph N. Martins, Ph.D., Colin L. Masters, M.D., Richard Mayeux, M.D., John M. Ringman, M.D.,
 Martin N. Rossor, M.D., Peter R. Schofield, Ph.D., D.Sc., Reisa A. Sperling, M.D., Stephen Salloway, M.D.,
 and John C. Morris, M.D., for the Dominantly Inherited Alzheimer Network

- Need of precise and early non-invasive characterization to:
 - diagnose and guide treatment of diseases otherwise incurable at later stages
 - valuate efficiency of (expensive) therapeutics to not delay more effective treatment, and not cause unnecessary side effects
- Evolution towards **personalized medicine** groups of patients \rightarrow the individual patient
- Diagnostic and therapeutic advances mainly driven by non-invasive bioimaging, particularly at individual level, for molecular signature
 - molecular changes precede morphological ones (more sensitive for early diagnosis and evaluation)
 - molecular biomarkers better evaluate complexity of each disease at patientand lesion- level (more specific for precise diagnosis and evaluation)

Molecular signature of neuro-endocrine tumors

- Need of precise and early non-invasive characterization to:
 - diagnose and guide treatment of diseases otherwise incurable at later stages
 - valuate efficiency of (expensive) therapeutics to not delay more effective treatment, and not cause unnecessary side effects
- Evolution towards **personalized medicine** groups of patients \rightarrow the individual patient
- Diagnostic and therapeutic advances mainly driven by non-invasive bioimaging, particularly at individual level, for molecular signature
 - molecular changes precede morphological ones (more sensitive for early diagnosis and evaluation)
 - molecular biomarkers better evaluate complexity of each disease at patientand lesion- level (more specific for precise diagnosis and evaluation)
 - ✓ this molecular complexity is linked to prognosis, and therapy (*companion drugs*)

¹¹C-PiB PET assessment of change in fibrillar amyloid-β load in patients with Alzheimer's disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study

Juha O Rinne, David J Brooks, Martin N Rossor, Nick C Fox, Roger Bullock, William E Klunk, Chester A Mathis, Kaj Blennow, Jerome Barakos, Aren A Okello, Sofia Rodriguez Martinez de Llano, Enchi Liu, Martin Koller, Keith M Gregg, Dale Schenk, Ronald Black, Michael Grundman

Lancet Neurol 2010; 9: 363–72

Published Online March 1, 2010 DOI:10.1016/S1474-4422(10)70043-0

Figure 2: Estimated change from baseline over time in mean ¹¹C-PiB PET

Data are least squares means and 95% Cls. *Difference between patients in the placebo group and those in the bapineuzumab group at week 78=-0.24 (p=0.003). PiB=Pittsburgh compound B.

¹⁸F-PIB Flutemetamol (GE Healthcare)

Attaquer les tumeurs de l'intérieur grâce à la radioactivité

Multi-view Separable Pyramid Network for AD Prediction at MCI Stage by ¹⁸F-FDG Brain PET Imaging

Xiaoxi Pan, Trong-Le Phan, Mouloud Adel, Caroline Fossati, Thierry Gaidon, Julien Wojak, and Eric Guedj, for Alzheimer's Disease Neuroimaging Initiative

IEEE Transactions on Medical Imaging, vol. 40, no. 1, pp. 81-92, Jan. 2021

Category	Method	Data type	Subjects	ACC	SEN	SPE	AUC
	Hinrichs et al. [6]	MRI, 18F-FDG PET	89AD + 94NC	84	84	82	87.16
	Padilla et al. [7]	¹⁸ F-FDG PET	53AD + 52NC	86.59	87.50	85.36	-
	Gray et al. [9]	¹⁸ F-FDG PET	50AD + 54NC	88.4	83.2	93.6	
Conventional methods	Li et al. [10]	¹⁸ F-FDG PET	25AD + 30NC	89.1	92	86	97
	Zhu et al. 2014 [11]	MRI, 18F-FDG PET, CSF*	51AD + 52NC	92.3	92.3	93.9	96.6
	Zhu et al. 2016 [12]	MRI, 18F-FDG PET	51AD + 52NC	93.3			
	Pan et al. 2019a [15]	18F-FDG PET	237AD + 242NC	92.57	90.89	94.42	96.83
	Pan et al. 2019b [16]	¹⁵ F-FDG PET	237AD + 242NC	94.20	91.45	96.76	97.42
Emerging methods	La et al. [27]	18F-FDG PET	226AD + 304NC	93.58	91.54	95.06	
	Suk et al. [28]	MRL 18F-FDG PET	93AD + 101NC	92.20	88.04	96.33	97.98
	Liu et al. [30]	¹⁸ F-FDG PET	93AD + 100NC	91.2	91.4	91.0	95.3
	Yee et al. [33]	¹⁵ F-FDG PET	237AD + 359NC	93.5	92.3	94.2	97.6
	Huang et al. [34]	MRL 18F-FDG PET	465AD + 480NC	89.11	90.24	87.77	92.69
	MiSePyNet (Ours)	¹⁹ F-FDG PET	237AD + 242NC	93.13	90.32	95.49	97.11

*CSF = Cerebrospinal fluid

	IABLE VIII			
PERFORMANCE COMPARISON	WITH STATE-OF-THE-ART	METHODS FOR	PMCI vs.	sMCI(%)

Category	Method	Data type	Subjects	ACC	SEN	SPE	AUC
Conventional methods	Gray et al. [9]	¹⁸ F-FDG PET	53pMCI + 64sMCI	63.1	52.2	73.2	
	Zhu et al. 2014 [11]	MRI, 18F-FDG PET, CSF	43pMCI + 56sMCI	70.9	42.7	94.1	77.4
	Zhu et al. 2016 [12]	MRL 18F-FDG PET	43pMCI + 56sMCI	69.9			101012
	Cheng et al. [14]	MRI, 18F-FDG PET, CSF	43pMCI + 56sMCI	71.6	76.4	67.9	74.1
	Pan et al. 2019a [15]	¹⁸ F-FDG PET	166pMC1 + 360sMCI	79.43	69.14	84.16	83.88
	Pan et al. 2019b [16]	¹⁸ F-FDG PET	166pMCI + 360sMCI	80.48	65.04	87.95	85.67
Emerging methods	Lu et al. [27]	¹⁸ F-FDG PET	H2pMCI + 409sMCI	82.51	81.36	82,85	
	Suk et al. [28]	MRI, 18F-FDG PET	76pMCI + 128sMCI	70.75	25.45	96.55	72.15
	Yee et al. [33]	¹⁸ F-FDG PET	210pMCI + 427sMCI	74.7	74.0	75.0	81.1
	MiSePyNet (Ours)	¹⁸ F-FDG PET	166pMCI + 360sMCI	83.05	72.12	88.06	86.80

A multiparametric molecular imaging

A quantitative imaging to characterize molecular signatures

Understand, Diagnose, Select, Predict, Evaluate, Treat

Biom	narker	Companion Drug	Theranostic	
 ✓ GLUT1 ✓ Cerebral blood flow ✓ Dopamine transporter ✓ DOPA-decarboxylyase ✓ D2/3 ✓ Noradrenergic reuptake 	Oncology ✓ GLUT1 ✓ LAT1 ✓ Choline-kinase ✓ PSMA ✓ Tyrosine ✓ Somatostatin receptor	Oncology/Neuroscience ✓ Targeted therapy ✓ Anti-amyloïd ✓ Anti-TAU ✓ Anti-inflammatory ✓ DOPA	Oncology ✓ ¹³¹ lodine ✓ ⁶⁸ Ga/ ¹⁷⁷ Lu-SSA ✓ ⁹⁰ Y/ ¹⁷⁷ Lu-TheraSphere	
 ✓ SHI1-A ✓ Acetylcholinesterase ✓ NMDA receptor ✓ TSPO: microglia activation ✓ Amyloïd burden ✓ TAU phosphorylation 	 ✓ Fluor ✓ VCAM-1 ✓ Thymidine-kinase ✓ Hypoxia 	✓ NOTES ✓ TMS/DBS ✓ Radiosurgery	ed to :	
Gallium, for tailore	ed peptide labeling	 ✓ CBT ✓ Virtual Reality Exposure There 	ару	
			e	

Spatial dimension

Local approach: texture analysis

Spatial dimension

From metabolic connectivity to molecular connectivity: application

Regional approach: metabolic connectivity on static images

European Journal of Nuclear Medicine and Molecular Imaging

https://doi.org/10.1007/s00259-019-04574-3

Pan et al., 2018 IEEE JBHI Inter-regional correlation analyis, IRCA Verger et al., **EJNMMI 2018**

Verger et al, Human Brain Mapping 2018

Le et al, Computational Statistics & Data Analysis 2020

Published online: 18 November 2019

Meso-cortical

and the theory temperature must be the V in Pr

Temporal dimension

Complex paradigms of activation, inside VR environment

Acrophobia, PTSD Verger et al., EJNMMI Res 2018 & Eur. J. Psychotrauma 2020 ; Rousseau et al., EJNMMI 2019; <u>collab. IRBA</u>

Fonctional connectivity on dynamic images

PNH project (@INT)

A multimodal imaging

SURFACE - FREESURFER

Processing Stream Overview

2. Skull Stripping 3. Volumetric Labeling

4. Intensity Normalization

7. Surface Extraction 8. Gyral Labeling

•Illustrations : DOI: <u>10.1037/neu0000446 - http://ielvis.pbworks.com/</u> - <u>https://www.andysbrainblog.com/</u> - <u>Anissa Rice</u>

PET2MRI

@FaridehBazangani

OPyTorch TorchIO Weights & Biases

« PETsurface » prediction

PETCritics

2D PROJECTION VIEW

- Freesurfer tool to apply data to sphere
- 2D projection (mollweid)
- \rightarrow New visualization for nuclear physician
- →Easier IA algorithms (2D vs 3D mesh)

HOLOGRAPHIC VIEWS

- Convert Freesurfer data to 3D model
- Implement 3D model to Augmented Reality with web interface
- Create 3D interface in Mixed Reality with Hololens 2
- Statistics visualization
- Better patient ad interview
- Upgrade medical interaction and diagnosis

