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Historical context

• Pioneering work of A. Iliadis and D. Barbolosi in 
pharmacokinetics and pharmacodynamic modeling in 
the 1980’s

• SMARTc (Simulation and Modeling for Adaptive 
Response for Therapeutics in Cancer) platform of the 
CRCM

• Strong collaboration with S. Benzekry from Inria MONC
for 7+ years (17 publications, one Inria-Inserm joint 
PhD, co-supervision of MD theses)

June 2020: laureate of the Inria-Inserm call for joint project-teams

A. Iliadis



Previous scientific achievements

• MODEL1: world first model-driven clinical trial in 
oncology

• Modeling toxicities

• Safe densification of chemotherapy doublet

• Adaptive, personalized scheduling

• Median survival improved from 20 to 55 months

safety–efficacy multiscale model describing the PK/
PD relationships between docetaxel and epirubicin, 
allowing the best in silico drug-dosing regimen (that 
is, docetaxel first and epirubicin 1 day later, a sequence 
opposite to that usually performed with these drugs) for 
each patient to be tested in a phase Ib trial101. To date, 
17 patients have been recruited and the proposed regimen 
was both well tolerated, and achieved a response rate of 
45%, a median progression-free survival of 10.4 months 
and a median survival of 54.6 months, which compares 
favourably to the results reported in initial publications of 
the docetaxel and epirubicin combination102–108.

Planning metronomic chemotherapy. The role of metro-
nomic chemotherapy in the treatment of cancer remains 
to be fully determined109. Metronomic chemotherapy is a 
paradigm that illustrates how changes in dose and sched-
ule can alter the mechanisms of action of drugs — for 
example, canonical cytotoxic agents can have antiangio-
genic or immune-stimulating effects, or both109. A better 
understanding of metronomics might be derived from 
mathematical modelling studies110, and computational 
approaches can facilitate comparison of the efficacy 
of conventional versus metronomic regimens. Because of 
the innumerable permutations for repeated, low-dose 
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Figure 4 | Example of PK/PD simulation to optimize a vinorelbine treatment regimen. The empirical metronomic 
regimen, incorporating a 50 mg fixed dose of vinorelbine on days 1, 3 and 5 (D1-D3-D5 50 mg) of a 7-day cycle (left panels), 
can provide substantial clinical benefit to many patients; however, mathematical modelling has helped to identify an 
alternative dynamic dosing schedule (right panels) of 30 mg, 60 mg and 30 mg on days 1, 2 and 4 (D1-D2-D4 30-60-30), 
respectively, which was predicted to achieved a higher antiproliferative efficacy (lower panels), while displaying the same 
safety profile based on absolute neutrophil count (middle panels)112. Shading represents confidence intervals. Permission 
obtained from Springer International Publishing © Barbolosi, D. GV�CN��%CPEGT�%JGOQVJGT��2JCTOCEQN� 74, 647–652 (2014).
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safety–efficacy multiscale model describing the PK/
PD relationships between docetaxel and epirubicin, 
allowing the best in silico drug-dosing regimen (that 
is, docetaxel first and epirubicin 1 day later, a sequence 
opposite to that usually performed with these drugs) for 
each patient to be tested in a phase Ib trial101. To date, 
17 patients have been recruited and the proposed regimen 
was both well tolerated, and achieved a response rate of 
45%, a median progression-free survival of 10.4 months 
and a median survival of 54.6 months, which compares 
favourably to the results reported in initial publications of 
the docetaxel and epirubicin combination102–108.

Planning metronomic chemotherapy. The role of metro-
nomic chemotherapy in the treatment of cancer remains 
to be fully determined109. Metronomic chemotherapy is a 
paradigm that illustrates how changes in dose and sched-
ule can alter the mechanisms of action of drugs — for 
example, canonical cytotoxic agents can have antiangio-
genic or immune-stimulating effects, or both109. A better 
understanding of metronomics might be derived from 
mathematical modelling studies110, and computational 
approaches can facilitate comparison of the efficacy 
of conventional versus metronomic regimens. Because of 
the innumerable permutations for repeated, low-dose 
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Figure 4 | Example of PK/PD simulation to optimize a vinorelbine treatment regimen. The empirical metronomic 
regimen, incorporating a 50 mg fixed dose of vinorelbine on days 1, 3 and 5 (D1-D3-D5 50 mg) of a 7-day cycle (left panels), 
can provide substantial clinical benefit to many patients; however, mathematical modelling has helped to identify an 
alternative dynamic dosing schedule (right panels) of 30 mg, 60 mg and 30 mg on days 1, 2 and 4 (D1-D2-D4 30-60-30), 
respectively, which was predicted to achieved a higher antiproliferative efficacy (lower panels), while displaying the same 
safety profile based on absolute neutrophil count (middle panels)112. Shading represents confidence intervals. Permission 
obtained from Springer International Publishing © Barbolosi, D. GV�CN��%CPEGT�%JGOQVJGT��2JCTOCEQN� 74, 647–652 (2014).
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safety–efficacy multiscale model describing the PK/
PD relationships between docetaxel and epirubicin, 
allowing the best in silico drug-dosing regimen (that 
is, docetaxel first and epirubicin 1 day later, a sequence 
opposite to that usually performed with these drugs) for 
each patient to be tested in a phase Ib trial101. To date, 
17 patients have been recruited and the proposed regimen 
was both well tolerated, and achieved a response rate of 
45%, a median progression-free survival of 10.4 months 
and a median survival of 54.6 months, which compares 
favourably to the results reported in initial publications of 
the docetaxel and epirubicin combination102–108.

Planning metronomic chemotherapy. The role of metro-
nomic chemotherapy in the treatment of cancer remains 
to be fully determined109. Metronomic chemotherapy is a 
paradigm that illustrates how changes in dose and sched-
ule can alter the mechanisms of action of drugs — for 
example, canonical cytotoxic agents can have antiangio-
genic or immune-stimulating effects, or both109. A better 
understanding of metronomics might be derived from 
mathematical modelling studies110, and computational 
approaches can facilitate comparison of the efficacy 
of conventional versus metronomic regimens. Because of 
the innumerable permutations for repeated, low-dose 
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Figure 4 | Example of PK/PD simulation to optimize a vinorelbine treatment regimen. The empirical metronomic 
regimen, incorporating a 50 mg fixed dose of vinorelbine on days 1, 3 and 5 (D1-D3-D5 50 mg) of a 7-day cycle (left panels), 
can provide substantial clinical benefit to many patients; however, mathematical modelling has helped to identify an 
alternative dynamic dosing schedule (right panels) of 30 mg, 60 mg and 30 mg on days 1, 2 and 4 (D1-D2-D4 30-60-30), 
respectively, which was predicted to achieved a higher antiproliferative efficacy (lower panels), while displaying the same 
safety profile based on absolute neutrophil count (middle panels)112. Shading represents confidence intervals. Permission 
obtained from Springer International Publishing © Barbolosi, D. GV�CN��%CPEGT�%JGOQVJGT��2JCTOCEQN� 74, 647–652 (2014).
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Meille et al. (Iliadis), Clin Pharmacokinet 2016,  Barbolosi et al., Nat Rev Clin Oncol, 2016

• Antiangiogenics + cytotoxics sequence
• Biological rationale: bevacizumab-induced vasculature

normalization

• Modeling tumor kinetics

• Calibration from experimental data

• Validation of model predictions

Modeling

Simultaneous Sequential B/C

Calibration Prediction

Validation

8 days
3 days

Mollard et al., Oncotarget 2017
Imbs et al., CPT: PSP, 2018, Schneider et al., CPT:PSP, 2019

Essais cliniques basés sur la modélisation mathématique : l’expérience marseillaise

D. Barbolosi



Current challenges in clinical oncology and pharmacology

Therapeutic strategies
are  increasingly complex Curse of dimensionality

Ever-increasing  amount of 
information for decision-making

Trial-and-error approaches unfit for current challenges 

Qualitative, quantitative and longitudinal ‘big’ data from: demographics, 
radiology, functional imaging, molecular biology, histology, immune-

monitoring, biomarkers, blood counts

Lack of appropriate numerical softwares that could support decision-making for determining the best strategy:
Treating or not? To what extent? Which drugs? Which dosing/scheduling/sequencing?



Math onco, machine learning and pharmacometrics

MIXED-
EFFECTS
LEARNING

MIXED-
EFFECTS
LEARNING

MATHEMATICAL ONCOLOGY
MACHINE 
LEARNING PHARMACOMETRICS

Limitations

• No clinical application

• Few validation of models

• Few models of metastasis

• Theoretical models for complex 
behaviours

• Dynamic models

Limitations

• No application in clinical oncology (yet?)

• Lack of interpretability

• Longitudinal data

• Focus on prediction rather than 
inference

• Integrates high-dimensional data

• Success for genomic and imaging data

• Quantitative methods to PK/PD data

• Success for applications to clinical trials 
and drug development

Limitations

• Limited use in routine

• Coarse-grained modeling

• Lack of integration of ‘big’ data



Mechanistic learning

LONGITUDINAL 
DATA

SURVIVAL
DATA

BASELINE 
DATA

Non-hematological

Clinical trial Personalized medicine

MECHANISTIC MODEL

MACHINE 
LEARNING

MIXED-
EFFECTS 

LEARNING

SURVIVAL 
LEARNING
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Research axes

• Axis 1: Modeling clinical biomarkers for personalized decision-making

• Axis 2: Individualizing anticancer drugs regimen

• Axis 3: Optimizing combinatorial strategies



Axis 1: D-Light project (n = 1415 patients)

c

OS data

c
Baseline clinical factors

and biomarkers
p ≃ 120

Mixed-
effects

ML

Model parameters
(e.g. KG, KS, TTG, …)

INPUTS TOOLS OUTPUTS

Model parameters
p ≃ 15

+

+

Prediction of phase III trial 
outcome from phase I/II 

and early data 

Individual prediction of
outcome

c

Tumor Kinetic data 

c

10 longitudinal Biomarkers 
data (e.g, Neutrophils)

c
RNAseq

p ≃ 50,000

Goal = predict response to immune-checkpoint inhibition in NSCLC

8,635 measurements 113,069 measurements

BACKGROUND

Machine Learning and Mechanistic Modeling for th
e prediction of Overall 

Survival on the basis of 1st lin
e Tumor Dynamics in HNSCC

  ,  A
. Auperin

2    , 
 J. Guigay3

      
,  S. Benzekry1

K. Atsou1

 ,  S
. Salas1, 4

• A mechanistic mathematical model was able to fit 
the clinical data of SLD measurements in a 

HNSCC clinical tria
l

• Mechanistic modeling and Machine learning algorithms were combined to predict Overall Survival

• Predictive power is only modest so far but only the SLD measurements was considered

==> include more features and model individual lesions kinetics

OBJECTIVES

CONCLUSION AND PERSPECTIVES

1 COMPutational pharmacology and clinical Oncology Team, Inria Sophia Antipolis - M
éditerranée, 

  Cancer Research Center of Marseille, Inserm, CNRS, Aix Marseille University, M
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 Prediction of Overall S
urvival and Response to 2nd line is a major challenge in tre

atment of    

HNSCC 

 Tumor kinetics during firs
t lin

e may provide interesting predictive metric
s for Overall Survival

 Propose the best mathematical model for the description of the longitudinal measurement of the 

patients individual SLDs (Sum of the Largest Diameters) 

 Predict the Overall Survival using the kinetic data of firs
t lin

e and some baseline data

Clinical data  

EXTREME (cetuximab, 5-FU, platinum)  

vs TPEx (cetuximab, docetaxel, platinum)  

Phase 2 clinical tri
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528 patients enrolled (263 (TPEx) and 265 

(EXTREME)).  
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The QUANTIC project

QUANTitative modeling combined to statistical learning to understand and predict resistance to Immune-checkpoint inhibition 
in non-small cell lung Cancer
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Axis 1: Modeling metastatic relapse in early-stage breast cancer

Mechanistic modeling

Size-structured PDE

g(v)

Experimental validation

Benzekry et al., Cancer Res, 2016 
Benzekry et al., Cancer Res, 2017

Machine
learning

Clinical prediction of relapse

Nicolò et al., JCO: Clin Cancer Inform, 2020

Mechanistic learning21 biomarkers
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Axis 2: Individualizing anticancer drugs regimen

ü A PK/PD/PGx model for personalizing the dosing of nucleosides analogs in leukemia patients

Demonstration of erratic activity in liver CDA because of PGx syndrome  

Possible impact on PK/PD relationships with several drugs in oncology

• Objectives: to run clinical trials in adult AML patients with cytarabine, liposomal cytarabine and azacytidine with full PK and
PGx support to build a PK/PD/PGx model to tailor dosing.

Ciccolini et al.  J Clin Oncol 2010;  
Fanciullino et al., Blood Adv 2017

Comparative 
Phase 2 trials 

standard tailoredPhenotyping

Genotyping

Modelling

Clinical
endpoints

TDM

Development and validation of a phenotyping test in serum to determine CDA status
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Axis 3: Optimizing combinatorial strategies with immunotherapy

• Combining cytotoxics, anti-angiogenics and anti-PD1 pembrolizumab is a mainstay in NSCLC
• Concomitant dosing is the standard of care, regardless of possible sequence-effects.

• Objectives: semi-mechanistic, mathematical model for driving this combination

Immune Check-Point  
Inhibitors

Chemotherapy

Anti-Angiogenics

MTD Low Dose

CTL CDDP PTXD CDDP + PTXD + anti-VEGF
MTD VS. Low MTD VS. Low MTD VS. Low

blood spleen tumor

CD4+ CD8+ NK Tregs MDSCs Leuco

• Mid-term objective: model-based prospective, phase 2 trial

Theoritical
Model Building

Data-informed
Model

In vivo 
experiments

Comparative 
Efficacy
Study

VS.

CDDP + PTXD + anti-VEGF
+ anti-PD1

Standard Model

ü Efficacy
ü Survival
ü Safety

Model Calibration Modeling & Simulation

• Modeling the data of the GFPC phase III clinical trial pembro vs 
pembro + chemo



WHAT?

Treatment
schedules

Drug combinations

Computational 
Oncology

Clinical Trials

Mechanistic 
Learning

WHY?

• Data analysis and modeling

• Powerful clinical and experimental
resources

Inria – Inserm : 
a win-win strategy

WHO?

• 5 in house ongoing clinical trials

A muldisciplinary team
Bedside -> model -> bench -> 

bedside

Take home message
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